afs rediwall Advanced Blade Column Design with AFS Rediwall® # AFS Rediwall® Overview #### Introduction AFS in conjunction with the Centre for Infrastructure Engineering, Western Sydney University (WSU) evaluated performance of AFS Rediwall® Blade Columns with simplified detailing utilising the standard end U-bars in lieu of ties. The elimination of ties within the limitations detailed below simplifies design, detailing and installation of AFS Rediwall® Permanent Formwork systems. These methods can be used by the designer to minimise construction costs. AFS Rediwall® Blade Columns offer a simplified design and reinforcement detailing provides flexibility. The use of U-bar reinforcement instead of complex confinement ties significantly increases the speed of installation while continuing to meet the compliance requirements of AS3600-2018 Amendment 2 and the NCC. #### Benefits of Rediwall® Blade Columns AFS Rediwall® Blade Columns provide simplified detailing utilising the standard end U-bars in lieu of closed ligatures or intermediate ties. Rediwall® Blade Columns are AS3600-2018 compliant. We have provided an example using the WSU advanced design method. #### Architectural Flexibility AFS Rediwall® advanced Blade Column design method offers greater architectural flexibility to help maximise lettable area by combining walls, columns, blades, and cores. #### **Build Cost** Reductions The new AFS Rediwall® advanced design method now allows for reinforcement detailing that greatly reduces the construction time of higher capacity Blade Columns. - No additional on-site trades - Faster completion time - Standard U-Bar (no need for custom reinforcement) - · Standard horizontal and vertical reinforcement - No need for specialised column formwork bracing - No need for on-site crane to lift formwork or reinforcement into place #### Ease of Installation The AFS Rediwall® Blade Column results in a reduction in formwork, labour, and disciplines on site. Other advantages include: - · No requirement for base ligature - No pre-installation of starter bar ligatures - Compatible with standard U-bars - Compatible with the AFS Vertical Bar locator system - Ease of inspection with open end caps # Introducing the new RW200C FF Column Panel The new RW200C (Female Female) FF Column Panel can be use to reverse the ends of a panel section. This is particularly useful during column construction when fibre cement end caps are required. Reversing the panel end allows a female clip end to be present at both ends of the column allowing for the **neat** fibre cement end caps. Fig 1. AFS Rediwall® isolated Blade Column #### **Compliance and Verification** AFS Blade Column capacities have been load tested and verified by Western Sydney University using existing Deemed To Satisfy (DTS) and alternate performance design methods for the performance equivalence U-bars without ties to walls designed as columns with ties in accordance with the AS3600-2018 Strength check procedure for use with non-linear stress analysis. The Advanced Design for AFS Blade Columns with end U-bars in-lieu of ligatures has been developed to AS3600-2018 clause 2.1.1 Design for strength and serviceability, in accordance with clause 2.2.6 Strength check procedure for use with non-linear stress analysis using Advanced Finite Element non-linear stress analysis (ABAQUS) and comparative physical prototype testing to Appendix B3 Proof Testing of Members and Structures, to evaluate the structural performance of AFS Blade Columns with reduced reinforcing steel tie complexity under eccentric axial load. Existing AS3600-2018 Design Methods and the new Advanced Design Methods are summarised in the following Design Flowchart: Fig 2: Design flowchart #### AFS Rediwall® Advanced Blade Column Design The AFS Rediwall® Advance Blade Columns design is in accordance with AS3600-2018 Section 10 provided the restraint provisions are satisfied within the provision of the WSU report^[1] referring to clause 11.7.4 (a) & (b) Restraint of Vertical Reinforcement for Walls. Detailing is as for walls designed as columns in accordance with AS3600-2018 clause14.4.4 General Requirements, Structural Walls with the end U-bars replacing the closed ties. ## AS3600-2018 11.7.4 Restraint of Vertical Reinforcement In addition to providing transverse reinforcement required for any design actions, the following restraint to vertical reinforement provisions shall be satisfied: - (a) For all walls in structures with a structural ductility factor (μ) greater than 1.0, the vertical reinforcement shall be restrained in accordance with Clause 14.6 - (b) For walls with concrete strength not exceeding 50MPa and designed as columns in accordance with Section 10, the vertical reinforcement shall be restrained in accordance with Clause 10.7.4 unless one or more of the following conditions is met, in which case no restraint is required: - (i) $N^* \le 0.5 \, \emptyset N_{ij}$ - (ii) The vertical reinforcement is not used as compressive reinforcement. - (iii) The vertical reinforcement ratio is not greater than 0.01 and minimum horizontal reinforcement ratio or 0.0025 is provided. Non-Ductile AFS Rediwall Blade Columns can be designed to AS3600-2018 as Columns with U-bars in lieu of ties utilising the adjustment factor relevant to various design parameters according to the following WSU findings: For AFS-Rediwall detailed with end U-bars and no ligatures AS3600-2018 reference interaction diagram can be used utilising the adjustment factor relevant to various design parameters in table below Table 1: WSU adjustment factor table for AFS Rediwall® | Concrete | Vertical | | Wall Length(L _w) | | |----------|--------------------|-------|------------------------------|--------| | strength | reinforement | ≤ 600 | ≤ 1500 | ≤ 2500 | | (MPa) | (P _{wv}) | А | djustment Facto | r | | | < 0.5% | 1.00 | 1.00 | 0.95 | | 32 | 0.5% to 1.0% | 1.00 | 1.00 | 0.95 | | | 1.0% to 2.2% | 1.00 | 1.00 | 1.00 | | | < 0.5% | 1.00 | 1.00 | 0.95 | | 40 | 0.5% to 1.0% | 1.00 | 0.95 | 0.90 | | | 1.0% to 2.2% | 1.00 | 1.00 | 1.00 | | | < 0.5% | 1.00 | 0.95 | 0.90 | | 50 | 0.5% to 1.0% | 1.00 | 0.90 | 0.90 | | | 1.0% to 2.2% | 1.00 | 1.00 | 1.00 | Note: for $\rho > 1\%$ all compressive reinforcement was excluded for calculating interaction curves as per AS3600 - Refer Figure 14 p52 WSU Report - Conclusions - The moment magnifier technique of AS3600:2018 can conservatively be used to modify moment capacity for AFS-encased columns for slenderness effects, (refer clause 6.5.3) - Since the ratio of the larger to smaller cross-sectional dimension for the majority cases of AFS Rediwall® columns exceeds 3.0, biaxial bending and compression shall be satisfied as per clause 10.6.4 AS3600, (refer to Section 6.6) - 4. For AFS Rediwall® systems acting as part of seismic-lateral-bearing system with limited ductility criteria as per AS3600-2018 (μ =2 and s $_p$ =0.77), the additional checks for boundary element confinement using strength index method shall be conducted - The report is for Non-Ductile Blade Column design only as section 14.6 Limited Ductile Design requirements were not included Non-Ductile AFS Blade Columns can be designed in accordance with AS3600-2018 clause 14.2.2 for strength for the calculated horizontal drifts. In other words, for the vertical loads with an offset equaling the inter story drift which produces an additional bending moment along the major axis of the element. #### **Design Examples** The following examples of AFS Blade Column solutions use the WSU AFS Advanced Blade Design methodology. Refer to the appropriate Blade Column Axial Capacity design table found in this document for detailed information. Fig 4: Typical Blade Column End Caps (or FC Strip not shown) Lapped U-Bars as per project specification Lap Alignment Bars ### Example 1 - For a RW200C Blade Column 1500 long From RW200 Design Table $\emptyset N_u = 1123 \text{ kN/m x } 1500 \text{mm} = 1684 \text{ kN}$ Values in tables were generated from standard moment interaction curves and moment magnifier loading. Check detailing against points 1 to 6 in "WSU AFS Advanced Blade Design" section. Fig 5: Moment interaction chart: RW200C, H_{w11}=3000mm, k=0.75, 50MPa, 2N20-200 vert, N12-233 horizontal U-bars each side Note: AS3600-2018 14.6.2.3 Limited Ductile Structures of more than four storeys stress limits for longitudinal reinforcement restraint limits of 0.2f'_c and Boundary Elements requirement of 0.15f'c have been shown for comparison. Table 2: FRP structural adequacy from AS3600-2018 clause 5.7.2 | RW200C FRP Structural Adequacy | 90 minutes | 120 minutes | 180 minutes | |--|----------------------|-----------------------|-----------------------| | RW200, exposed one side, built in to fire separating wall | u _{fi} =0.7 | u _{fi} =0.7 | u _{fi} =0.53 | | RW200 x:y > 4,exposed two sides not built into fire separating walls | u _{fi} =0.7 | u _{fi} =0.62 | u _{fi} =0.31 | $[\]bullet \ a_s = 55mm \ (d_h = 41 + (N16 + N12)/2), \ D = 195mm, \ H_{we} < 7800, \ u_{fi} = N^*_{\it f}/ \rlap/ ON_u$ #### Example 2 - For a RW300S Blade Column 2500 long From RW300 Design Table $\emptyset N_u = 1889 \text{ kN/m x } 2500 \text{mm} = 4722 \text{ kN}$ Values in tables were generated from standard moment Interaction curves and moment magnifier loading. Check detailing against points 1 to 6 in "WSU AFS Advanced Blade Design" section. Fig 6: Moment interaction chart: RW300S x2500long , H_{wu}=3000mm, k=0.75, 32MPa, 2N16-300 vert, N12-233 horizontal U-bars each end Note: AS3600-2018 14.6.2.3 Limited Ductile Structures of more than four storeys stress limits for longitudinal reinforcement restraint limits of 0.2f'_c and Boundary Elements requirement of 0.15f'c have been shown for comparison. Table 3: FRP structural adequacy from AS3600-2018 clause 5.7.2 | RW300S FRP Structural Adequacy | 90 minutes | 120 minutes | 180 minutes | 240 minutes | |--|----------------------|----------------------|-----------------------|-----------------------| | Built into fire separating wall, exposed one side, | u _{fi} =0.7 | u _{fi} =0.7 | u _{fi} =0.7 | u _{fi} =0.7 | | Isolated Blade, x:y > 4, B>1200, exposed two sides | u _{fi} =0.7 | u _{fi} =0.7 | u _{fi} =0.7 | u _{fi} =0.54 | | Isolated Blade, x:y < 4, B<1200, exposed four sides, [Eq 5.6.3(2)] | u _{fi} =0.7 | u _{fi} =0.5 | u _{fi} =0.15 | - | [•] a_s = 55mm (d_h =41+(N16+N12)/2), D=295mm, H_{we} < 7800, u_f = N^*_f / $\emptyset N_u$ #### AFS Rediwall® Advanced Column Design Tables The following AFS Rediwall® design tables for rediwall have been prepared utilising moment interaction curves and moment magnifier in accordance with the Advanced Design Methods to determine the member capacities for non-ductile vertical load bearing Blade Columns. Other column design tools can also be used provided they account for the adopted clause 11.7.4(b) where for vertical reinforcement ratios exceed 0.01 the vertical reinforcement is not used as compression reinforcement and concrete strength does not exceed 50MPa. Fig 7: AFS Rediwall® Blade Column integration into a dividing wall #### **RW200C Blade Column** Fig 8: RW200C typical Blade Column ## RW200 Blade Column Axial Capacity $\emptyset N_u$ (kN/m) Non-Ductile 2 Layers AFS Rediwall® Axial Loaded Blade Columns with U-bars in lieu of ties in accordance with "AFS Logicwall® and AFS Rediwall® axial-flexural interaction curve generation numerical and theoretical investigations", Western Sydney University and AS3600-2018 Amdt 2 clause11.7.4(b) Restraint. | | | ØN _u (kN/m), | ØN _u (kN/m), Vertical Bars, f' _c 32 Mpa | | | ØN₀(kN/m), Vertical Bars, f'c 40 Mpa | | | ØN _u (kN/m), Vertical Bars, f'₅ 50 Mpa | | | |--------------------------|-------------------------|-------------------------|---|-------------|----------------------|--------------------------------------|-------------|----------------------|---|-------------|--| | $ecc < \frac{1}{6}$ | H _{wu} (k=1.0) | 2N12-300 | 2N20-300 | 2N20-200 | 2N12-300 | 2N20-300 | 2N20-200 | 2N12-300 | 2N20-300 | 2N20-200 | | | H _{wu} (k=0.75) | H _{we} | 0.0039 | 0.0107#1 | 0.0161#1 | 0.0039 | 0.0107#1 | 0.0161#1 | 0.0039 | 0.0107#1 | 0.0107#1 | | | 5500 | 4125 | 486 | 537 | 579 | 575 | 629 | 680 | 679 | 734 | 792 | | | 5000 | 3750 | 567 | 622 | 668 | 672 | 732 | 783 | 794 | 856 | 918 | | | 4500 | 3375 | 670 | 722 | 777 | 795 | 855 | 911 | 940 | 1006 | 1066 | | | 4000 | 3000 | 798 | 847 | 907 | 950 | 1003 | 1068 | 1127 | 1182 | 1252 | | | 3600 | 2700 | 921 | 967 | 1030 | 1100 | 1148 | 1217 | 1309 | 1357 | 1431 | | | 3200 | 2400 | 1062 | 1106 | 1123 | 1271 | 1319 | 1387 | 1516 | 1565 | 1639 | | | 3000 | 2250 | 1123 | 1123 (1183) | 1123 (1243) | 1372 | 1404 | 1404 (1480) | 1640 | 1681 | 1754 | | | 2800 | 2100 | 1123 (1233) | 1123 (1263) | 1123 (1321) | 1404 (1482) | 1404 (1513) | 1404 (1577) | 1755 | 1755 (1805) | 1755 (1876) | | | 0.15f¹₅ La | ateral limit | | 936 | | | 1170 | _ | | 1463 | | | | Max Blade | e Length#2 | 1500
(0.5 to 1.0%) | | 00
2.2%) | 600
(0.5 to 1.0%) | | 00
2.2%) | 600
(0.5 to 1.0%) | | 00
2.2%) | | ^{1123 (1233) -} lower value where clause 10.7.3.1(2) applies #### **RW200C Minimum Reinforcement** | RW200C | Vertical Bars - Each Face | | | | | | |----------------|---------------------------|-----|-----|-----|--|--| | Allowable Bars | N12 | N16 | N20 | N24 | | | | N12 Horizontal | | | | | | | | N16 Horizontal | | | | | | | | Horizontal Bar Spacing 233/350 | | | |---------------------------------|--|--| | Vertical Bar Spacing 150 to 350 | | | | Acceptable | | | | With Caution | | | | Not Recommended | | | | | | | ^{#1} Compression reinforcement ignored in accordance with clause 11.7.4(b) ^{#2} Max Blade Length from WSU Report Fig 16 for Standard AFS detailed Blades with U-bars and no ties with Adjustment Factor to AS3600-2018 ≥ 1.0 ^{#3} Clause 14.6.2 Boundary Element limit if acting as part of Lateral System, refer WSU Report p4 Note 6 #### RW256S Blade Column Fig 9: RW256S typical Blade Column #### RW256S Blade Column Axial Capacity ØN_u (kN/m) Non-Ductile 2 Layers AFS Rediwall® Axial Loaded Blade Columns with U-bars in lieu of ties in accordance with "AFS Logicwall® and AFS Rediwall® axial-flexural interaction curve generation numerical and theoretical investigations", Western Sydney University and AS3600-2018 Amdt 2 clause 11.7.4(b) Restraint. | | | ØN _u (kN/m), | ØN _u (kN/m), Vertical Bars, f' _c 32 Mpa | | | ØN₀(kN/m), Vertical Bars, f'₀ 40 Mpa | | | ØN _u (kN/m), Vertical Bars, f'₀ 50 Mpa | | | |---------------------------------|-------------------------|-------------------------|---|-------------|----------------------|--------------------------------------|-------------|----------------------|---|-------------|--| | ecc < 1/ ₆ | H _{wu} (k=1.0) | 2N12-300 | 2N20-300 | 2N24-200 | 2N12-300 | 2N20-300 | 2N24-200 | 2N12-300 | 2N20-300 | 2N24-200 | | | H _{wu} (k=0.75) | H _{we} | 0.0030 | 0.0084 | 0.0107#1 | 0.0030 | 0.0084 | 0.0107#1 | 0.0030 | 0.0084 | 0.0107#1 | | | 5500 | 4125 | 1011 | 1182 | 1239 | 1202 | 1378 | 1449 | 1425 | 1604 | 1689 | | | 5000 | 3750 | 1162 | 1334 | 1386 | 1384 | 1562 | 1627 | 1644 | 1826 | 1903 | | | 4500 | 3375 | 1332 | 1440 (1515) | 1440 (1548) | 1592 | 1775 | 1800 | 1895 | 2079 | 2145 | | | 4000 | 3000 | 1440 (1518) | 1440 (1720) | 1440 (1721) | 1800 | 1800 (2024) | 1800 (2042) | 2172 | 2250 (2378) | 2250 (2413) | | | 3600 | 2700 | 1440 (1693) | 1440 (1900) | 1440 (1862) | 1800 (2034) | 1800 (2243) | 1800 (2223) | 2250 (2437) | 2250 (2645) | 2250 (2641) | | | 3200 | 2400 | 1440 (1878) | 1505 (2086) | 1504 (2001) | 1800 (2263) | 1800 (2473) | 1800 (2403) | 2250 (2721) | 2250 (2929) | 2250 (2872) | | | 3000 | 2250 | 1440 (1970) | 1559 (2179) | 1546 (2068) | 1800 (2379) | 1832 (2588) | 1844 (2490) | 2250 (2865) | 2250 (3072) | 2250 (2986) | | | 2800 | 2100 | 1440 (2062) | 1614 (2270) | 1587 (2131) | 1800 (2493) | 1899 (2702) | 1897 (2574) | 2250 (3007) | 2250 (3213) | 2255 (3096) | | | 0.15 <i>f</i> ′ _c La | iteral limit#3 | 1200 | | 1500 | | 1875 | | | | | | | Max Blade | e Length#2 | 1500
(0.5 to 1.0%) | | 00
2.2%) | 600
(0.5 to 1.0%) | 25
(1.0 to | | 600
(0.5 to 1.0%) | | 00
2.2%) | | ^{1440 (1518) -} lower value where clause 10.7.3.1(2) applies #### **RW256S Minimum Reinforcement** | RW256C | Vertical Bars - Each Face | | | | | | |----------------|---------------------------|-----|-----|-----|--|--| | Allowable Bars | N12 | N16 | N20 | N24 | | | | N12 Horizontal | | | | | | | | N16 Horizontal | | | | | | | | Horizontal Bar Spacing 240 | | | |---------------------------------|--|--| | Vertical Bar Spacing 150 to 350 | | | | Acceptable | | | | With Caution | | | | Not Recommended | | | | | | | ^{#1} Compression reinforcement ignored in accordance with clause 11.7.4(b) ^{#2} Max Blade Length from WSU Report Fig 16 for Standard AFS detailed Blades with U-bars and no ties with Adjustment Factor to AS3600-2018 ≥ 1.0 ^{#3} Clause 14.6.2 Boundary Element limit if acting as part of Lateral System, refer WSU Report p4 Note 6 #### RW275S Blade Column Fig 10: RW275S typical Blade Column #### RW275S Blade Column Axial Capacity ØN, (kN/m) Non-Ductile 2 Layers AFS Rediwall® Axial Loaded Blade Columns with U-bars in lieu of ties in accordance with "AFS Logicwall® and AFS Rediwall® axial-flexural interaction curve generation numerical and theoretical investigations", Western Sydney University and AS3600-2018 Amdt 2 clause 11.7.4(b) Restraint. | | | ØN _u (kN/m), | ØN _u (kN/m), Vertical Bars, f' _c 32 Mpa | | | ØN₀(kN/m), Vertical Bars, f'₀ 40 Mpa | | | ØN _u (kN/m), Vertical Bars, f'₀ 50 Mpa | | | |---------------------------------|-------------------------|-------------------------|---|-------------|----------------------|--------------------------------------|-------------|----------------------|---|-------------|--| | ecc < 1/ ₆ | H _{wu} (k=1.0) | 2N16-300 | 2N20-300 | 2N24-200 | 2N12-300 | 2N20-300 | 2N24-200 | 2N12-300 | 2N20-300 | 2N24-200 | | | H _{wu} (k=0.75) | H _{we} | 0.005 | 0.0078 | 0.0107#1 | 0.0028 | 0.0078 | 0.0107#1 | 0.0028 | 0.0078 | 0.0107#1 | | | 5500 | 4125 | 1333 | 1431 | 1480 | 1571 | 1675 | 1737 | 1848 | 1955 | 2032 | | | 5000 | 3750 | 1498 | 1549 (1605) | 1549 (1639) | 1774 | 1880 | 1931 | 2094 | 2199 | 2268 | | | 4500 | 3375 | 1549 (1687) | 1549 (1804) | 1549 (1809) | 1937 (2000) | 1937 (2119) | 1937 (2143) | 2366 | 2421 (2487) | 2421 (2529) | | | 4000 | 3000 | 1549 (1901) | 1549 (2023) | 1549 (1984) | 1937 (2262) | 1937 (2385) | 1937 (2365) | 2421 (2687) | 2421 (2811) | 2421 (2808) | | | 3600 | 2700 | 1549 (2083) | 1601 (2206) | 1603 (2122) | 1937 (2486) | 1937 (2611) | 1937 (2544) | 2421 (2963) | 2421 (3088) | 2421 (3037) | | | 3200 | 2400 | 1591 (2265) | 1710 (2388) | 1688 (2254) | 1937 (2713) | 2008 (2838) | 2014 (2717) | 2421 (3245) | 2421 (3370) | 2421 (3261) | | | 3000 | 2250 | 1645 (2353) | 1764 (2476) | 1728 (2317) | 1949 (2823) | 2075 (2948) | 2066 (2799) | 2421 (3383) | 2437 (3507) | 2456 (3368) | | | 2800 | 2100 | 1698 (2438) | 1817 (2561) | 1768 (2375) | 2014 (2930) | 2140 (3054) | 2117 (2878) | 2421 (3516) | 2518 (3640) | 2521 (3471) | | | 0.15 <i>f</i> ′ _c La | teral limit#3 | | 1291 | | 1614 | | 2018 | | | | | | Max Blade | e Length#2 | 1500
(0.5 to 1.0%) | | 00
2.2%) | 600
(0.5 to 1.0%) | 25
(1.0 to | 00
2.2%) | 600
(0.5 to 1.0%) | | 00
2.2%) | | ^{1546 (1687) -} lower value where clause 10.7.3.1(2) applies #### **RW275S Minimum Reinforcement** | RW275S | Vertical Bars - Each Face | | | | | |----------------|---------------------------|-----|-----|-----|-----| | Allowable Bars | N12 | N16 | N20 | N24 | N28 | | N12 Horizontal | | | | | | | N16 Horizontal | | | | | | | Horizontal Bar Spacing 240 | | | | |---------------------------------|--|--|--| | Vertical Bar Spacing 150 to 350 | | | | | Acceptable | | | | | With Caution | | | | | Not Recommended | | | | | | | | | ^{#1} Compression reinforcement ignored in accordance with clause 11.7.4(b) ^{#2} Max Blade Length from WSU Report Fig 16 for Standard AFS detailed Blades with U-bars and no ties with Adjustment Factor to AS3600-2018 ≥ 1.0 ^{#3} Clause 14.6.2 Boundary Element limit if acting as part of Lateral System, refer WSU Report p4 Note 6 #### RW300S Blade Column Fig 11: RW300S typical Blade Column #### RW300S Blade Column Axial Capacity ØN, (kN/m) Non-Ductile 2 Layers AFS Rediwall® Axial Loaded Blade Columns with U-bars in lieu of ties in accordance with "AFS Logicwall® and AFS Rediwall® axial-flexural interaction curve generation numerical and theoretical investigations", Western Sydney University and AS3600-2018 Amdt 2 clause 11.7.4(b) Restraint. | | | ØN _u (kN/m), Vertical Bars, f' _c 32 Mpa | | | ØN _u (kN/m), Vertical Bars, f' _c 40 Mpa | | | ØN _u (kN/m), Vertical Bars, f' _c 50 Mpa | | | |--------------------------|-------------------------|---|-----------------------|-------------|---|-----------------------|-------------|---|-----------------------|-------------| | ecc < 1/ ₆ | H _{wu} (k=1.0) | 2N16-300 | 2N20-300 | 2N24-200 | 2N16-300 | 2N20-300 | 2N24-200 | 2N16-300 | 2N20-300 | 2N24-200 | | H _{wu} (k=0.75) | H _{we} | 0.0046 | 0.0071 | 0.0107#1 | 0.0046 | 0.0071 | 0.0107#1 | 0.0046 | 0.0071 | 0.0107#1 | | 5500 | 4125 | 1659 | 1693 (1779) | 1693 (1807) | 1963 | 2083 | 2117 | 2318 | 2437 | 2504 | | 5000 | 3750 | 1693 (1843) | 1693 (1976) | 1693 (1976) | 2117 (2185) | 2117 (2321) | 2117 (2341) | 2585 | 2646 (2723) | 2646 (2763) | | 4500 | 3375 | 1693 (2053) | 1693 (2191) | 1693 (2150) | 2117 (2442) | 2117 (2582) | 2117 (2561) | 2646 (2899) | 2646 (3041) | 2646 (3039) | | 4000 | 3000 | 1693 (2276) | 1758 (2416) | 1758 (2322) | 2117 (2717) | 2117 (2859) | 2117 (2783) | 2646 (3239) | 2646 (3382) | 2646 (3322) | | 3600 | 2700 | 1731 (2456) | 1866 (2595) | 1842 (2454) | 2117 (2941) | 2189 (3082) | 2196 (2955) | 2646 (3516) | 2646 (3658) | 2646 (3544) | | 3200 | 2400 | 1837 (2628) | 1972 (2766) | 1923 (2575) | 2177 (3156) | 2320 (3296) | 2300 (3116) | 2646 (3785) | 2727 (3926) | 2736 (3754) | | 3000 | 2250 | 1889 (2709) | 2024 (2846) | 1961 (2632) | 2241 (3258) | 2385 (3397) | 2350 (3191) | 2656 (3913) | 2807 (4052) | 2800 (3853) | | 2800 | 2100 | 1939 (2785) | 2075 (2922) | 1998 (2685) | 2305 (3354) | 2448 (3492) | 2398 (3261) | 2735 (4034) | 2885 (4172) | 2862 (3945) | | 0.15f' c Lateral limit#3 | | 1411.2 | | 1764 | | | 2205 | | | | | Max Blade Length#2 | | 1500
(0.5 to 1.0%) | 2500
(1.0 to 2.2%) | | 600
(0.5 to 1.0%) | 2500
(1.0 to 2.2%) | | 600
(0.5 to 1.0%) | 2500
(1.0 to 2.2%) | | 1693 (1843) - lower value where clause 10.7.3.1(2) applies #### **RW300S Minimum Reinforcement** | RW300S | Vertical Bars - Each Face (min. N12-350) | | | | | | | | |----------------|--|-----|-----|-----|-----|--|--|--| | Allowable Bars | N12 | N16 | N20 | N24 | N28 | | | | | N12 Horizontal | | | | | | | | | | N16 Horizontal | | | | | | | | | | Horizontal Bar Spacing 240 | | | | |---------------------------------|--|--|--| | Vertical Bar Spacing 150 to 350 | | | | | Acceptable | | | | | With Caution | | | | | Not Recommended | | | | | | | | | ^{#1} Compression reinforcement ignored in accordance with clause 11.7.4(b) ^{#2} Max Blade Length from WSU Report Fig 16 for Standard AFS detailed Blades with U-bars and no ties with Adjustment Factor to AS3600-2018 ≥ 1.0 ^{#3} Clause 14.6.2 Boundary Element limit if acting as part of Lateral System, refer WSU Report p4 Note 6 #### AFS Rediwall® Fire Performance AFS Rediwall® has been fire tested and assessed. Stephen Grubits & Associates (SGA) have analysed the fire-resistance of AFS Rediwall® to be in accordance with AS 3600-2018 allowing the FRP of AFS Rediwall® to be determined for structural adequacy, integrity and insulation. For more details, refer to the SGA report 2013/277.26 R.1.1 Issued 9/9/2019 "Fire-Resistance of Rediwall® – Determination in accordance with AS 3600" [3]. #### Fire Rated Junctions A range of fire junction solutions have been fire tested and assessed to AS1530.4-2014 for the easy integration of various fire rated system and Rediwall®. The junction details include options to connect AFS Rediwall® with pvc face left in place, to: - CSR Gyprock Fyrchek - CSR Gyprock Shaft Liner Panel - CSR Hebel - Concrete and concrete masonry wall systems For a additional information refer to "AFS Rediwall® fire rated junction guide" or contact afs. Fig 12: Example of a fire rated junction #### **Column Construction** #### Rediwall® Floor Track and Panel Fixing - Position the Rediwall® floor track or angles at the correct column location and fix the track to the slab. - Screw fix each Rediwall® panel to the floor track on both sides of the panel. - Vertical bar locators (VBL) and alignment bars can be used to assist with location and installation of the vertical reinforcement. Once sufficient number of Rediwall® panels are fixed in place, fix the VBL to the inside web face of the AFS Rediwall® panel at the desired locations of the vertical bar alignment guides. - If using the RW200C FF Column Panel, it is recommended that it be used at least 1 full panel from the end of the column. The RW200C FF Column Panel **CANNOT** be use as the end panel. - If VBL are used, slide the alignment bar (R10) through the VBL. **Note**: These guide bars are **NOT** to be considered as part of the wall structural reinforcement. #### **U-bar Installation** #### **U-Bar Installation** Insert the U-Bars into the Column at the required spacings. Refer to engineers details. The vertical reinforcement bars are then lowered into the Rediwall® panel, at the correct locations. Ensure that the vertical bars are on the internal side horizontal U-bars, and on the outer side of the alignment bars. **Note:** A small 20mm bend at the base of the vertical bar can be used to "joggle" the bar past the horizontal bars. The offset makes it easy when lowering the vertical reinforcing bars into the wall to weave it in between the locator bars and the outer horizontal reinforcing bars. A mark on the vertical joggle bars can facilitate locating the alignment bars so that the joggle bars can be paused just above the horizontal locator bar can speed up reinforcement installation. 3 Insert the two fibre cement end caps into the Rediwall® panel clips. Ensure that the column is fully braced. #### Definitions AFS Blade Column A short Blade Wall designed and detailed with U-bars in lieu of ties to WSU Advanced Design Methods in accordance with AS3600-2018. AFS Column A column designed and detailed with ties to AS3600-2018 Section 10 Columns. AFS Limited Ductile Walls Walls designed in accordance with AS3600-2018 Section 2.2 Strength and clauses 14.4 General Earthquake Requirements and 14.6 Limited Ductile Walls. AFS Non-ductile Walls Walls designed in accordance with AS3600-2018 Section 2.2 Strength and clauses 14.4 General Earthquake Requirements. #### Reference 1. "AFS Logicwall® and AFS Rediwall® axial-flexural interaction curve generation numerical and theoretical investigation", Centre for Infrastructure Engineering, Western Sydney University - 2. "AS3600-2018 Concrete Structures Code" - 3. "Fire-Resistance of Rediwall® Determination in accordance with AS3600", SGA Report 2013/277.26 R1.1 issued 9/9/2019 Notes #### Disclaimer: The products referred to in this document have been manufactured by or on behalf of CSR Building Products Limited ("CSR") to comply with the Building Code of Australia and any relevant Australian Standards. While any design or usage guidelines set out in this document have been prepared in good faith by CSR, they are of a general nature only and are intended to be used in conjunction with project specific design and engineering advice. It is the responsibility of the customer to ensure that CSR's products are suitable for their chosen application, including in respect of project-specific matters such as, but not limited structural adequacy, acoustic, fire resistance/combustibility, thermal, and weatherproofing requirements. All information relating to design/installation/ application of these products is offered without warranty and no responsibility can be accepted by CSR for errors and omissions, or for any use of the relevant products not in accordance with CSR's technical literature or any other relevant industry standards. For current technical and warranty documentation relating to CSR's products, visit the AFS website at www.afsformwork.com.au The AFS logo and Rediwall® mark are registered trade marks. © 2022 AFS SYSTEMS PTY LTD. No part of this publication may be reproduced in any form or by any means without prior written permission from AFS Systems Pty Ltd. All rights reserved. © 2024 AFS Systems Pty Ltd ABN 455 760 727 88 BMSAFS1842 0724